Exercise 3.1 Calculating Work and Power

Objective

At the conclusion of this exercise, you will be able to do the following:

- 1. Apply trigonometry to determine the X-component of a force vector.
- 2. Calculate the amount of work being performed on an object.
- 3. Calculate power output as a function of work and time.

Procedure

Read the section on force, work, and power in Chapter 3, "The Mechanical Advantage," in the *Principles of Engineering* textbook.

FIGURE 3-2 Work.

- 1. In Figure 3-2, a constant 150-lb force is applied to a box at a 35° angle relative to the horizontal floor, pushing against friction and sliding the box 8 feet across the floor from point A to point B in 10 seconds. Use this information to answer the following questions. Show your math work in the spaces provided.
 - a. What is the value of the horizontal component of the force vector?

$$F_x =$$

b. How much work was done to the box?

$$W =$$

c. How much power was exerted, in watts?

Simple Machines

Explore Your World

Locate four different kitchen, gardening, or other tools that use one or more simple machines. For each tool, create a pictorial sketch of the tool that is annotated with:

- Overall dimensions (e.g., overall length and width) of the tool
- A description of the operation of the device
- The type(s) of simple machine(s) that the tool uses

See Figure 3-43 in your textbook for an example of an annotated sketch.